
Research Article Vol. 10, No. 8 / 1 August 2019 / Biomedical Optics Express 4207

Analysis of low-scattering regions in optical
coherence tomography: applications to
neurography and lymphangiography

VALENTIN DEMIDOV,1,* LEV A. MATVEEV,2 OLGA DEMIDOVA,3

ALEXANDER L. MATVEYEV,2 VLADIMIR Y. ZAITSEV,2 COSTEL
FLUERARU,4 AND I. ALEX VITKIN1,5,6

1Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada
2Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950,
Russia
3Department of Arts and Science, Seneca College, 1750 Finch Avenue East, Toronto, M2J 2X5, Canada
4National Research Council Canada, Information Communication Technology, 1200 Montreal Rd, Ottawa,
K1A0R6, Canada
5University Health Network, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1,
Canada
6University of Toronto, Department of Radiation Oncology, 150 College St, Toronto, M5S 3E2, Canada
*val.demidov@mail.utoronto.ca

Abstract: Analysis of semi-transparent low scattering biological structures in optical coherence
tomography (OCT) has been actively pursued in the context of lymphatic imaging, with most
approaches relying on the relative absence of signal as a means of detection. Here we present an
alternate methodology based on spatial speckle statistics, utilizing the similarity of a distribution
of given voxel intensities to the power distribution function of pure noise, to visualize the
low-scattering biological structures of interest. In a human tumor xenograft murine model, we
show that these correspond to lymphatic vessels and nerves; extensive histopathologic validation
studies are reported to unequivocally establish this correspondence. The emerging possibility
of OCT lymphangiography and neurography is novel and potentially impactful (especially the
latter), although further methodology refinement is needed to distinguish between the visualized
lymphatics and nerves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The lymphatic system and its role in cancer growth and metastasis have received increasing
attention [1–3], suggesting it as prognostic and targetable feature for local tumor control. However,
despite its clinical relevance, our understanding of its development and function in tumors lags
far behind that of the other circulatory system of blood vasculature, mostly due to the limitations
of available imaging techniques.

Effective in-vivo detection of optically semitransparent lymphatic microvasculature has proven
to be extremely challenging. For example, radioactive (lymphoscintigraphy), magneto-chromatic
(magnetic resonance lymphography), fluorescent (indocyanine green (ICG) lymphography)
dyes or microbubbles (ultrasound lymphography) [4–7] have been injected into the tissue at
the particular anatomical site of interest to image the local draining lymphatic network, a
rather limited clinical approach. In animal models, high resolution intravital ICG fluorescence
microscopy is commonly used to visualize the lymphatic vessels and lymph nodes in greater
detail, albeit within a limited depth range (up to 0.3-0.4mm) [8].
These techniques have proven useful in some aspects of preclinical research or clinical

applications. However, none are optimal, suffering from issues that include poor spatial
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resolution, contrast agent injection procedures that impact subject comfort or alter physiology,
and potential chemical or radiation toxicity. Therefore, efforts continue to develop new and
improved methodologies for in-vivo imaging lymphatic vessels and lymph nodes, ideally without
the need for contrast agent injection. One such emerging technology potentially suitable for
high-resolution label-free detection of lymphatic networks is optical coherence tomography
(OCT), a 3D imaging modality for visualizing subsurface tissue details at resolutions approaching
microscopy and blood flow details at the microcirculation level to a depth of 1 - 3mm [9]. Recent
advances in OCT technology have introduced dye-free imaging of tumor microenvironment,
angiogenesis, lymphangiogenesis, tissue viability and responses to vascular-targeted and cellular-
targeted therapies [1,10].

In conventional OCT cross-sectional structural imaging, lymphatic vessels appear as transparent
structures of elongated shape with negligible scattering intensity. During the last decade, several
research groups have been developing and improving lymphangiography methods based on such
negative contrast of OCT intensity images [1,11,12]. However, optical transparency of lymph
and resulting low-scattering OCT signal at levels approaching the system noise floor present
significant challenges for in-vivo lymphatic vasculature detection. The presence of OCT speckles
further complicates the correct visualization of lymphatic vessels; as speckle may be larger in
size than one imaging pixel (depending on the specifics of the OCT system), signal amplitudes
from otherwise high-scattering tissue areas may reach noise level due to destructive interference
within a particular speckle, thus appearing as an erroneous lymph region. Further, OCT’s signal
reduction with depth requires phantom-based measurements of attenuation coefficients specific
for each particular OCT imager to be used with low-signal amplitude thresholding approaches
[13]. Recent reports suggesting solutions to these challenges take into account lymphatic vessels
form, speckle median value in the chosen regions of interest, speckle decorrelation time and
absence of the in-depth signal loss [12,14]. All these solutions, while effective to some degree,
require complex and computationally expensive procedures.
Another important semi-transparent biological structure of interest is a nerve [15–17]. Pe-

ripheral nerve fibers innervate tumors [18,19] and interact with cancer cells [20,21] altering
the behavior of tumor angiogenesis and growth [22] and serving as a dissemination pathway
for invasion with spread to distant sites [23,24]. In clinical practice, magnetic resonance (MR)
imaging is sometimes used for the whole- or partial-body neurography, mostly in neurosurgery
[25]. Recently, a high-resolution MR neurography of diffuse peripheral nerve lesions was adopted
with application to tumors >5 cm in diameter [26], limiting its use in the clinic and in preclinical
studies. OCT’s contribution to nerve imaging has been mostly confined to ophthalmology,
specifically to retinal nerve fiber layer segmentation and correlation of changes of its thickness
with various eye diseases [27]. The retinal nerve fibers appear on ocular OCT as a bright layer
of eye distinguishable from adjacent anatomical layers [28]. The structure of peripheral nerves
comprises one or more fascicles of several thousand nerve fibers. Fascicles are bound together by
epineurium tissue tens of microns thick [29]. Nerve fibers themselves are positively contrasted in
the OCT images but electrically insulating tissues around them are semi-transparent [30]. To date,
reports of OCT nerve imaging outside of ophthalmology have been limited to visualization of
large (∼1mm in diameter) peripheral nerves in animal models following traumatic crush injury,
suture ligation, and transection [31–33].

Here we propose a novel approach to OCT lymphangiography/neurography that addresses the
negative contrast challenges by utilizing the statistical nature of OCT speckles [34]. Speckle
statistics report on spatial and temporal distribution properties of OCT signal to be utilized for
characterization of biological tissues [34–36]. Since as mentioned we are interested in detecting
lymphatic and nerve low-signal regions that are hard to separate from noise, we quantify their
similarities / differences using speckle statistics (rather than simply comparing signal intensity
levels). As validated by histological studies, the low-scattering near-noise level signals from
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lymphatic vessels and connective tissues around nerves exhibit speckle statistics similar to the
power distribution function of pure noise. By quantifying this similarity and selecting a suitable
threshold range, we demonstrate accurate OCT mapping of these two important components
of tumor microenvironment, although further methodology refinement is needed to distinguish
between the visualized lymphatics and nerves.

2. Materials and methods

2.1. Optical coherence tomography system

A swept-source OCT system based on a quadrature interferometer to suppress the complex
conjugate artifact [37,38] was used in this study (Fig. 1). Its light source (HS2000-HL, Santec,
Japan) with 20 kHz rotating-polygon-based tunable filter and wavelength centered at 1320 nm,
had a sweep range of 110 nm and an average output power of 10mW. The axial and lateral
resolutions in air were 8 and 15 µm, respectively. OCT optical power at the probe output was
measured before each imaging session to be 5mW, OCT probe imaging angle was set to 86°
relative to horizontal, and imaging speed was fixed at 40 frames per second (with 80% scanning
galvo duty cycle of the imaging probe).

Fig. 1. Schematic diagram of the swept-source OCT system setup with quadrature Mach-
Zehnder fiber-based interferometer and optical amplification: SOA - semiconductor optical
amplifier, PC - polarization controller, A - fiber attenuator, DB - dual balanced photo-
detector, DAQ - data acquisition card, C - collimator, MZ Interferometer - Mach-Zehnder
interferometer, M - mirror. SGx and SGy - scanning mirrors driven by galvanometers in x
and y lateral dimensions, CR - circulator, L - lens. Red lines represent optical paths, blue
lines are electrical signals.

As schematically shown in Fig. 1, the amplified signal was combined with the reference signal
in a 3 × 3 coupler followed by a 2 × 2 coupler for two channels balanced detection to extract the
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components of the complex interferometric signal. A 120° phase shift between each channel was
recalculated into a 90° phase shift using trigonometric equations as previously described [37].
DC component of each channel’s detector signal was subtracted prior to recording of the full
complex spectral amplitude S(n) for each of 2048 spectral bandwidth components n:

S(n) = Q1(n) + i · Q2(n), (1)

with Q1(n) and Q2(n) corresponding to real and imaginary parts of full analytical complex signal.
Physically obtained full complex signal eliminated the need for digital frequency modulation of
the signal by Hilbert transform, for example as commonly performed for in-phase-only OCT
systems [39]. Although addition of the physical quadrature is not critically important for the
proposed method, it increases the signal-to-noise ratio and in part addresses the destructive
interference challenge discussed in the introduction that may cause a low-signal artefact in the
absence of real tissue lymphatics / nerves: at least one of the two channels will likely retain the
constructive interference of the resultant complex OCT signal.

2.2. Mouse and tumor models

All animal procedures were approved by the University Health Network Institutional Animal
Care and Use Committee in Toronto, Canada (AUP #3256). 7-8 weeks immune-compromised
mice (NRG strain, Jackson Labs, ME, USA) with dorsal skin window chamber (DSWC) were
used for experiments. Tumors were generated by injection of 2.5×105 human-derived pancreatic
cancer cells (BxPC-3 cell line, AntiCancer Inc., San Diego, CA, USA) prepared in 10 µL of 1:1
PBS:Matrigel (BD Biosciences, ON, Canada) solution into the dorsal skin using 30G needles.
DSWC installation was performed 15-21 days post injection after the tumors reached 3-5mm
diameter using the procedure described previously [10]. A mouse with installed DSWC is shown
in Fig. 2(a).
To help interpret and to support in-vivo observations, animals were sacrificed after OCT

imaging and tissues were extensively examined by histology using three different biological stains.
Mice were euthanized by anesthesia with ketamine/xylazine followed by cervical dislocation.
Tumors and normal skin tissues were resected, fixed in 10% formalin and processed for histologic
staining. Hematoxylin and Eosin (H&E) stainingwas used to view cellular morphology; lymphatic
vessel endothelial hyaluronan receptor 1 (LYVE-1) was used to visualize lymphatic vessels; and
cells were distinguished from connective tissues (including the epineurium surrounding nerve
fascicles) with Masson’s Trichrome (MT) staining. Slides were scanned by Aperio Scanner and
evaluated using Aperio ImageScope software (Leica Biosystems, Concord, ON, Canada).

2.3. OCT imaging and speckle statistical analysis

Volumetric OCT images were obtained in-vivo using normal and tumor-bearing mice in a dorsal
skin window chamber model (Figs. 2(a,b)). Speckle statistical data was collected by recording
24 B-scans at each lateral location with 800 A-scans along the fast lateral scan axis and 1600
cross sections in the slow axis direction. In order to obtain 24 B-scans at the frame rate of 40
frames / second with a 20kHz OCT system, each B-scan was split into two frames. Due to the
galvo mirror duty cycle of 80%, only 400 of A-scans were acquired per frame from possible 500.
Merging two frames together resulted in 800 A-scans in each B-scan. Scanned tissue volumes
(6mm x6mm laterally, x ∼1.5mm in depth) were divided into smaller analysis volumes of
5× 3× 3 pixels in size (slow lateral x fast lateral x depth) over 24 repetitive scans, yielding 1080
pixels for statistical calculations.

Typical B-scan at the tumor-normal tissue boundary is shown in Fig. 2(c) (location labeled with
the blue line in Fig. 2(b)). Noises in two signal detection channels |Q1 | and |Q2 | corresponding
to area at the bottom of the image (ROI1 in Fig. 2(c)) were assumed to be uncorrelated, each
experimentally exhibiting in time domain a statistically Gaussian distribution function centered
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Fig. 2. Speckle statistical data analysis of OCT images. (a) White-light photo of a mouse
with installed dorsal skin window chamber; (b) The photo of the chamber with grown
pancreatic adenocarcinoma tumor. Blue line indicates the location of (c) the structural OCT
image. ROI1 – deep location (noise area), ROI2 - solid tumor tissue, ROI3 - lymphatic
vessel lumen; (d) Speckle statistics for OCT signal noise: left and right are statistics for
detection channels |Q1 | and |Q2 | used to form full complex signal S. DB – dual balanced
photo-detector (for details see Fig. 1); (e) Speckle statistics of the noise speckle amplitudes
A in ROI1, well described by the Rayleigh distribution (R2 = 0.9996); (f) Speckle statistics
of the signal-rich tumor tissue in ROI2, displaying a poorer Rayleigh fit (R2 = 0.82); (g)
Speckle statistics of the lymphatic vessel lumen in ROI3, showing closer-to-noise goodness
of fit (R2 = 0.98). Red curves correspond to Gaussian fit for (d), and Rayleigh fit for (e), (f)
and (g).

on the DC component (red curve, Fig. 2(d); R2 > 0.999). After DC component subtraction and
inverse Fourier transform of the complex spectral amplitude S=Q1 + iQ2,

A = |FT−1[S]|, (2)

the resulting statistical distribution of the noise speckle amplitudes A in ROI1 is very well
described by the three-parameter Rayleigh distribution function [40]:

P(x; a, b, c) =
a(x − c)

b2
e
−(x−c)2

2b2 , (3)

where a is the amplitude normalization parameter, b - power distribution function parameter and
c - shifting parameter (red curve, Fig. 2(e); R2 > 0.99).
As was shown in a number of publications including Refs. [35,36], as well as in our

earlier controlled phantom studies [41], with the increasing number of identical scatterers per
coherence volume, the corresponding speckle statistics will asymptotically lead to a Rayleigh
distribution. However, while applicable to a homogenous medium with identical and discrete
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random-particulate scatterers, this argument is only loosely applicable to biological tissues, a
medium with a fundamentally different nature (inhomogenous medium with random-continua
scatterers). Speckle amplitude statistics for solid tissue signals (tumor in ROI2) differ from
ROI1 noise signals as demonstrated in Fig. 2(f). For such signal-rich areas of imaged tissue, the
Rayleigh fit of Eq. (2) does not describe the data well (R2 ∼ 0.82, and the shift parameter is two
orders of magnitude greater (ctumor = 17.7 vs cnoise= -0.18)). Importantly, there is an intermediate
fitting regime that forms the basis of the proposed methodology: for lymphatic vessel lumen signal
from ROI3 as demonstrated in Fig. 2(g), the speckle statistics are close to Rayleigh distribution of
noise (R2 = 0.984, as are the individual fit parameters (clymph= -0.11 vs cnoise= -0.18)). We can
thus select a suitable goodness-of-fit R2 range to isolate these semi-transparent tissue structures
from noise and from surrounding tissue signals, as described below.
It is important to note here, that although the number of 1080 pixels per ROI was considered

to be sufficient to detect structures of interest, these 1080 statistical samples of the speckle
distribution per small analysis volume may not be fully independent at OCT’s frame rate of 40Hz
and the resultant inter-frame temporal spacing of 25ms. In our earlier in-vivo experiments [42,43]
we explored the range of OCT signal decorrelation times for blood, tumor and normal tissues. For
blood, decorrelation times were found to range from ∼20ms (0.5mm/s flow rate in small vessels
like capillaries) to ∼1ms (>12mm/s flow rate in larger vessels); tumor and normal tissues had
much longer decorrelation times reaching ∼500ms and 1.1s (skin), respectively. Decorrelation
times for lymphatics have not been measured, but assuming similarity with slow blood flow,
these may be roughly estimated to be several to tens of milliseconds. Therefore, at inter-frame
temporal spacing of 25ms, the signals from “liquid” voxels (blood, lymphatics) are largely
decorrelated, whereas those from “solid” regions likely remain significantly correlated. This may
cause some deviations from fully developed signal histogram distributions (e.g., Fig. 2(f)) and
their goodness-of-fit R2 by Rayleigh distribution of noise.
Optimal inter-frame times and number of repeat B-scans are also yet to be determined.

Further, M-mode-like acquisition patterns developed for blood microangiography [44] may prove
beneficial for this application, whereby rapidly acquired high-density B-scans with hundreds of
A-scans in a resolution volume will still allow the formation of speckle statistics in noise regions
commensurate with the described Rayleigh fitting procedure.

2.4. Microvasculature (blood and lymph) and nerves detection

We utilize the statistical distribution functions of complex signal speckle amplitudes, specifically
their similarity to the Rayleigh fit indicative on pure noise, to separate out lymphatic vessels and
nerves from OCT images as shown schematically in Fig. 3. Figure 3(a) shows the white light
photo of a pancreatic adenocarcinoma tumor grown in a window chamber model (6× 6 mm2

field of view). Recorded 24 B-scans (Fig. 3(b)) at each lateral location are used for simultaneous
mapping of low-scattering tissues by newly proposed speckle filtering method (left side) and
microvascular angiographic imaging (right side). As shown on the left in Fig. 3(c), nerves and
lymphatic vessels mapping consists of two simple steps. First, speckle amplitudes from each
voxel are plotted as a histogram and fitted with Rayleigh distribution function to find the R2

value. Secondly, empirically chosen 0.95<R2<0.99 thresholding range is applied to the entire
volumetric image to map nerves and lymphatic vessels in 3D; these are then superimposed in
cyan color on the same B-scan (shown in lateral view average intensity projection below it).
Note that nerves appear as oval-shaped structures surrounded by optically semi-transparent
tissue; this identification is confirmed by multi-stain histology, as described below (see Results
and Discussion). Further, the above R2 threshold range choice is not unique nor selected from
theoretical considerations; this is simply an empirical first-pass discrimination for the purposes
of this proof-of-principle demonstrations based on the analysis summarized in Fig. 2. Improved
thresholding selections, including the possible use a-b-c fitting parameter space as per Eq. (3) to
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supplement the R2 metric, will be pursued in future studies as briefly mentioned in the Results
and Discussion section.

Fig. 3. Simultaneous mapping of low-scattering tissues by spatial speckle filtering and
of blood vessels by temporal speckle variance methods. (a) The white light photo of a
pancreatic adenocarcinoma tumor grown in a window chamber model; (b) N = 24 OCT
B-scans from the same lateral location within the scanned volume. Scale bar is 0.3mm; (c)
Nerves and lymphatic vessels mapping. Step 1: Speckle amplitudes from each voxel are
plotted as a histogram and fitted with Rayleigh distribution function to find the R2 value. Step
2: 0.95<R2<0.99 thresholding is applied to the entire imaged volume to map nerves and
lymphatic vessels (shown in the same B-scan as in (b), and in a lateral-view average intensity
projection (AIP) below it). Nerves appear as oval ring-shaped structures. LV-lymphatic
vessel; (d) Blood vessels mapping using conventional speckle variance algorithm (shown in
the same B-scan as in (b) and in average intensity projection (AIP) below it). BV – blood
vessel; (e) Combined 3D volumes of lymphatic/blood vessels and nerves, presented in a
lateral-view average intensity projection form.

The right side of the figure (Fig. 3(d)) shows the OCT blood angiography as performed using
conventional speckle variance algorithm [35]; this is displayed on the same B-scan and in lateral
view average intensity projection below it. The resultant bottom left (lymphatics and nerves) and
bottom right (blood microvasculature) are inherently co-registered; the final step would be to
combine both 3D volumes, as presented in Fig. 3(e) in a lateral view average intensity projection
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form. To do this properly in 3D, however, so as to furnish additional helpful visual information 
will require more research; this will also be pursued in future studies and be reported in a separate 
publication. For the remainder of this work we thus display the lymphatics/nerves and blood 
angiograms separately: blood microvasculature depth-encoded in RGB color space as described 
previously (green-yellow-red-grey shallow to deep color map) [45] and lymphatics/nerves in a 
grey-scale color map.

3. Results and discussion

3.1. Normal skin

Microarchitecture of healthy vascular network is known to be hierarchically organized with 
ordered and evenly distributed blood vessels to allow adequate perfusion of nutrients and oxygen 
to all cells [46]. Indeed, both white-light microphotography (Fig. 4(a)) and speckle-variance OCT

Fig. 4. Mouse dorsal skin angiography, lymphangiography/neurography, and histology.
(a) White-light photo of dorsal skin in window chamber, field of view= 6× 6 mm2. (b)
Depth-encoded blood microvasculature map of (a). (c) Grey-scale average R2– thresholded
projection for low-scattering regions in (a). Dashed-line white (A) and yellow (B) rectangular
areas are expanded in (d) for blood microvasculature, and (e) for lymphatic vessels and nerves,
some of which are labeled with arrows, the former as cyan and the latter as purple. (f) OCT
B-scan with histological stains in (g), (h) and (i) from approximately same location in tissue.
(g) Overall tissue architecture and cellular morphology are visualized with Hematoxylin and
Eosin (H&E) staining; (h) Nerves are distinguished from surrounding connective tissues
with Masson’s Trichrome (MT) staining; (f) Lymphatic vessels are visualized with lymphatic
vessel endothelial hyaluronan receptor 1 (LYVE-1). Tissue layers are labelled in the bottom
row images as Fs – fascia, M- muscle, F – fat, D – dermis, E – epidermis. Nerves are labeled
with purple arrows, lymphatic vessels – with cyan arrows. Scale bars in top row panels are
1mm; in bottom row are 0.1mm.
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(Fig. 4(b), shown in a color depth-encoded view) of normal skin blood network clearly demonstrate
this. Faint lightly colored vessel-like structures are seen in the white light photomicrograph,
perhaps indicative of lymph vessels or nerves; these faint “lines” are not visible in the svOCT
blood angiograph. The speckle analysis and threshold filtering method described in this paper
now allows detailed visualization of these semi-transparent structures, as shown in Fig. 4(c); the
detected lymphatic / nerve networks also appear highly organized with regular coverage of the
whole area. To determine which one is which was not possible from white light and OCT images
alone, and required detailed histological correlative validation studies as presented in the bottom
row panels of Fig. 4.
Figure 4(f) shows a representative OCT cross-sectional structural B-mode scan from the

imaged normal skin region, along with three histological sections stained with H&E, Masson’s
Trichrome, and LYVE-1 (Fig. 4(g-i)). From the detailed comparison of locations, shapes, and
compositions of the various tissue components seen on multi-stain histology with the OCT (and
white light) images, we were able to identify the visualized structures of Fig. 4c. Specifically,
the tree-like structures are the lymphatic vessels located primarily close to the epidermis that
stain with lymph-vessel-specific LYVE-1 (cyan arrows on Fig. 4(i)). Conversely, the more
straight runs seen on en-face views of the top row images are nerves located in the fascia, as
clearly revealed in Masson’s Trichrome histology (purple arrows on Fig. 4(h), highlighting the
connective tissue sheath that typically surrounds a nerve fascicle; note that these structures do
not stain with LYVE-1, so cannot be lymphatic vessels). Armed with this interpretation from
multi-stain histology, we labeled the OCT-predicted regions (0.95<R2 < 0.99 similarity to the
Rayleigh distribution) with purple arrows to indicate nerves on all panels of Fig. 4, and likewise
labeled lymphatics with cyan. Going back to the OCT maps of Figs. 4(b) and 4(c), the white
(A) and yellow (B) rectangle regions from the same locations are shown zoomed in below for
comparison (Figs. 4(d) - blood vessels and 4(e) - nerves and lymphatics). In the Fig. 4e we have
likewise labeled some of the OCT-detected nerves and lymphatics with purple and cyan arrows,
respectively. As seen, the nerve and lymphatic structures of normal mouse skin also show a
relatively regular and ordered pattern, in analogy with the visualized blood network in Fig. 4(d).

3.2. Tumor

Moving on from normal to pathologic imaging, Fig. 5 shows considerably different patterns when
pancreatic adenocarcinoma is examined. Rapidly growing tumor mass infiltrates surrounding
normal tissues and changes their anatomy. The white light photomicrograph of Fig. 5(a) shows
increase swelling and redness; this is borne out by the extensive, highly vascularized but more
chaotic microvascular network seen in Fig. 5(b). Lymphatic vessels and nerves detected in
Fig. 5(c) also appear somewhat enlarged and chaotic compared to normal tissue architecture.
The zoomed-in views of Figs. 5(d) and 5(e), where the two areas (A and B) have been enlarged
as per Fig. 4, indeed show disorganized labyrinth of blood vessels (A) and thicker lymphatics
(B). In analogy with the normal tissue analysis of Fig. 4, the bottom row panels show an OCT
cross-sectional scan (Fig. 5(f)) from the region near the tumour edge indicated on Fig. 5(a) along
with histological validation using three different stains (Fig. 5(g-i)). Compared to normal tissues,
this tumour edge region reveals the lack of distinct tissue layers seen on histology, thicker nerves
(purple arrows) and lymphatic vessels (cyan arrows). In contrast to the edges, the core of the tumor
seen in Fig. 5(c) presents the tangled circuitry of immature lymphatic vessels of larger diameters.
LYVE-1 staining in Fig. 5(j) corresponding to the green line in the threshold-filtered OCT map
of Fig. 5(c), clearly identifies two newly formed lymphatic vessels with thinner walls. These
appear filled and are most likely not functional, as previously reported using ferritin-positive
tracking and molecular lymphatic marker Prox-1 immunostaining [47].
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Fig. 5. Angiography, lymphangiography/neurography and histology of pancreatic adenocar-
cinoma grown in a mouse dorsal skin window chamber. (a) White-light photo of dorsal skin
in window chamber, field of view – 6× 6 mm2; (b) Depth-encoded blood microvasculature
map of (a); (c) Grey-scale average R2– thresholded projection for low-scattering regions in
(a). Dashed-line white (A) and yellow (B) rectangular areas are expanded in (d) for blood
microvasculature, and (e) for lymphatic vessels and nerves, some of which are labeled with
arrows, the former as cyan and the latter as purple. Scale bars in (a), (b) and (c) are 1mm;
(f) OCT B-scan with corresponding Hematoxylin and Eosin (H&E) staining in (g) from
approximately same location in tissue. Black dash-lined rectangular areas are enlarged in (g)
and (h); (h) Nerves are distinguished from surrounding connective tissues with Masson’s
Trichrome (MT) staining; (i) Peri-tumoral lymphatic vessels are visualized with lymphatic
vessel endothelial hyaluronan receptor 1 (LYVE-1). Nerves are labeled with purple arrows,
lymphatic vessels – with cyan arrows. (j) LYVE-1 staining of the tumor core tissue (location
labeled with green line in (c)), identifying two newly formed lymphatic vessels with thinner
walls. Scale bars in (h), (i) and (j) are 0.1mm.

Figures 4 and 5 demonstrate the main advantage of the new method – controlled detection
of tissues of interest without operator dependence. Indeed, accurate selection of lymphatics-
containing tissue layers, one of the main challenges in negative-contrast approaches, is not an
issue with the proposed speckle filtering methodology. Further, destructive interference challenge
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causing low-signal artefacts, OCT imager-specific depth attenuation compensation, lymphatics
vesselness filtering and other complex and computationally expensive procedures discussed in
the Introduction become unnecessary. Instead, a direct 2-step process is employed involving (1)
Rayleigh fit to speckle amplitudes histogram and (2) R2 goodness-of-fit metric thresholding.

A direct consequence of the quality of the proposed methodology is the demonstrated detection
of the neural network. To the best of our knowledge, this is the first in-vivo OCT nerve
visualization in normal and tumor tissues outside of ophthalmology, opening the door to many
exciting applications in local anesthesia administration and neurosurgical avoidance of enervated
tissue regions. However, to explore these properly, further methodology improvements are needed
to distinguish between the visualized lymphatics and nerves. These technique refinements will
develop models for non-empirical thresholds selection, explore the information contained in
the three-parameter space of the Rayleigh fit, and find appropriate ways to combine the blood,
lymph and neural networks in three-dimensional volumetric composite images for enhanced
visualization and quantification.

Overall, the reported speckle statistics difference between lymph/nerves and pure noise may be
partly due to tissue heterogeneity versus noise homogeneity effects (within the ROIs selected for
analysis). To address this, we have recently started to simulate the OCT speckle patterns using
the approach described in Refs. [48,49] for zero-to-low scatterer concentrations and effects of
varying ROI sizes; the outcomes of this research will be reported in a separate publication.

4. Conclusion

In conclusion, we have presented a new OCT method for simultaneous in-vivo detection of
nerves and lymphatic vessels. In comparison with previous negative-contrast techniques, it
does not require signal attenuation evaluation and compensation, and addresses OCT speckle
destructive interference issues. At low-scattering OCT signal levels approaching the system
noise floor, the proposed method distinguishes tissue nerve and lymph optical signatures using
speckle statistical parameters. To the best of our knowledge, direct nerves detection by OCT
has not been reported outside of ophthalmology; this may have exciting applications including
image-guided local anesthetics injection into nerve-containing tissues in interventional procedure,
or accurate removal of pathological tissue with minimal disruption of surrounding neuronal
matter in neurosurgery. Future work will attempt to separate lymphatic vessels from nerves
by improved R2 metric thresholding selection, closer examination of the a-b-c Rayleigh fitting
parameter space (Eq. (3)) and furnishing additional visual / quantifiable information by combining
blood, lymph and neural networks into composite three-dimensional images.
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